New Trends in Dynamic Geometry

DORIN ANDRICA

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Romania E-mail: dandrica@math.ubbcluj.ro

Ovidiu Bagdasar

School of Computing and Engineering, University of Derby, United Kingdom E-mail: o.bagdasar@derby.ac.uk

Keywords: dynamic geometry, iterative processes, asymptotic behaviour.

Given a fixed plane configuration \mathcal{F}_0 and a sequence of plane transformations $(T_n)_{n>0}$, one can define a *dynamic geometry* as the iterative process described by

 $\mathcal{F}_0 \xrightarrow{T_0} \mathcal{F}_1 \xrightarrow{T_1} \mathcal{F}_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-1}} \mathcal{F}_n \xrightarrow{T_n} \mathcal{F}_{n+1} \xrightarrow{T_{n+1}} \cdots$

After *n* steps the initial configuration \mathcal{F}_0 is transformed into \mathcal{F}_n by the composition $T_{n-1} \circ \cdots \circ T_0$. The initial configuration \mathcal{F}_0 can be any general pattern defined using polygons, circles, or associated geometric elements (see [2], [3], [4], [5], [7]).

Some concrete problems arising in the study of a dynamic geometry include:

- 1. Compute the *n*-step configuration \mathcal{F}_n and its geometric elements;
- 2. Investigate the convergence of the sequence $(\mathcal{F}_n)_{n\geq 0}$;
- 3. Study the convergence in shape of the sequence $(\mathcal{F}_n)_{n>0}$;
- 4. If the above sequence is convergent, then try to identify the limit and find convergence order of some of its elements;
- 5. Obtain properties of the initial configuration \mathcal{F}_0 from the study of the geometry of \mathcal{F}_n for some $n \geq 1$.

This session invites contributions related to the above topic, including recurrent patterns, fractals, difference equations, connections to fixed point theory or other iterative processes whose exploration is linked to geometry.

References

- D. Andrica, O., Bagdasar, O., Recurrent Sequences. Key Results, Applications, and Problems, Springer Nature, 2020.
- [2] D. Andrica, O. Bagdasar, D. Şt. Marinescu, Dynamic geometry of Kasner triangles with a fixed weight, Int. J. Geom. 11(2) (2022), 101–110.
- [3] D. Andrica, D. Şt. Marinescu, Dynamic Geometry Generated by the Circumcircle Midarc Triangle. In: Rassias, Th. M. and Pardalos, P. M. (eds.) Analysis, Geometry, Nonlinear Optimization and Applications, World Scientific Publishing Company Ltd, Singapore, 2022 (in press).
- [4] G. Z. Chang, P. J. Davis, Iterative processes in elementary geometry, Amer. Math. Monthly 90(7) (1983), 421–431.
- [5] J. Ding, L. R. Hitt, X-M. Zhang, Markov chains and dynamic geometry of polygons, Linear Algebra Appl. 367 (2003), 255–270.
- [6] L. R. Hitt, X-M. Zhang, Dynamic geometry of polygons, Elem. Math. 56(1) (2001), 21–37.
- [7] D. Ismailescu, J. Jacobs, On sequences of nested triangles, Period. Math. Hung. 53(1-2) (2006), 169–184.